If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+6y-10=0
a = 2; b = 6; c = -10;
Δ = b2-4ac
Δ = 62-4·2·(-10)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{29}}{2*2}=\frac{-6-2\sqrt{29}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{29}}{2*2}=\frac{-6+2\sqrt{29}}{4} $
| (x−4)(x−5)(x−6)(x−7)=1680 | | 6x+3(x+4)=0 | | 140x=95 | | -(-4+2y)+2y=4 | | 1/64=8q | | 3b/6=2b=10 | | 3b +2b = 106 | | 0.22x^2+3.3x+30=0 | | -13x-37=11-7x | | x+3=3x-8 | | 3y-5÷2+1=1y÷2+3 | | t −9 = 119 | | 4x+33+7=3x+30+5 | | 11x+5=15x-7=45 | | 11x+5=13x-7=45 | | -y=-41 | | (6x+5)+(7x-4)=180 | | 10-g=6 | | 400x+300x=200x | | 3b-5=85 | | 3.75=324/s | | 8-z=10+2z | | 1.5=87/s | | 2.4=120/s | | 4x-3(2x-7)=41 | | 120=2.4/s | | x(x+2)^3=0 | | 38=76/s | | 3=60/s | | —4x—3=—3x | | 3=60÷s | | (2x+5)^2-4=32 |